

series

592-1

2-Stage Servovalve Rated flows up to 20 l/m

Features

Very high response
Maximum operating pressure 315 bar
ISO 10372-04-04-0-92 mounting pattern
External pilot supply (5 port)
Suitable for 3-way or 4-way applications
Low hysteresis & zero point drift
High spool drive forces
Spool in bushing design
Dry torque motor with mechanical feedback
Long life Sapphire Technology

HYDRAUSTAR ZA des Garennes F41100 St FIRMIN des PRES

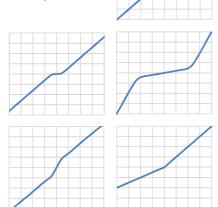
www.hydraustar.com

Sapphire ball in slot design

- Incorporated into Star designs since 1988
- Many billions of cycles per service life
- Increased spool life due to spool rotation
- Ultra low coefficient of friction sapphire to steel
- Feedback mechanism unhindered by spool rotation
- Extended warranties available

Safety

- Flame proof
- Intrinsic safety
- Class, Div & Zone coverage
- Mechanical failsafe
- Double & triple coil redundancy



- Independant audit process is our commitment on quality
- Focus on customer needs and expectations
- Delivery schedules on time
- Continual improvements on products and services
- Maintaining design and manufacturing integrity

Custom spool lap & bushing port geometries

- Zero overlap
- Overlap (closed center)
- underlap (open center)
- Dual gain
- Asymmetric gain

Sapphire flow

- Ensuring first stage stability
- Precisely matched flow properties
- Long life in extreme environments

Special projects

- Compact servo designs
- Special interfaces
- Modular components

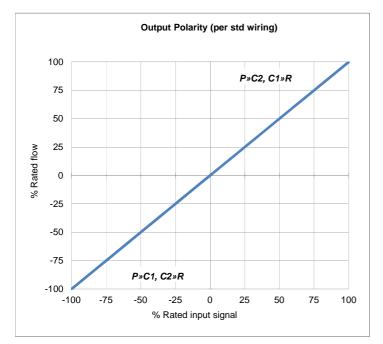
Sealing materials

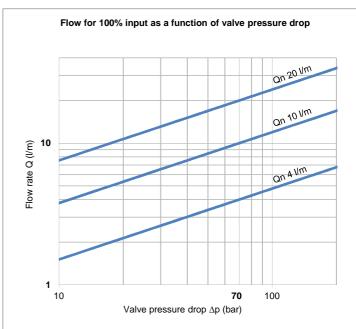
- Nitrile
- Fluorocarbon (Viton)
- Ethylene-Propylene
- Fluorosilicone

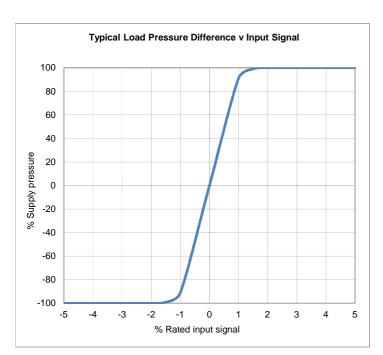
Special connectors

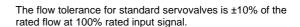
- MIL-C-5015
- MIL-DTL-38999
- Conduit style male/female
- Hermetic

Н١	/dr	aulic	۰
	/ UI C	aunc	ı

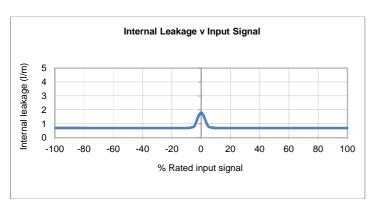

at 70 bar ∆p	4, 10, 20 l/m				
Ports	P, C1, C2, X	R			
NBR, FPM	315 bar	315 bar			
EPDM	280 bar	210 bar			
	10 to 100 mm ² /s (cSt)				
	Mineral oil to ISO 11158	3, DIN 51524 or equivalent			
	MIL-H-5606				
	Skydrol				
	Kerosene				
	Water glycols				
	others on request				
Pressure line	Beta 10 = 200 (10 μ m abs), non by-pass & indicator				
Off-line	Beta 2 = 1000 (2 μm abs)				
ISO 4406: 1999					
minimum	16/ 14/ 11				
recommended	15/ 13/ 10				
	Ports NBR, FPM EPDM Pressure line Off-line ISO 4406: 1999 minimum	Ports P, C1, C2, X NBR, FPM 280 bar 10 to 100 mm²/s (cSt) Mineral oil to ISO 11158 MIL-H-5606 Skydrol Kerosene Water glycols others on request Pressure line Beta 10 = 200 (10 μm at at a strength of the strength o			

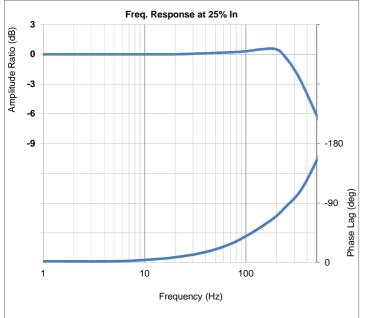

Operational parameters

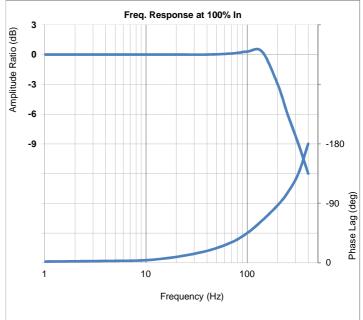

Hysteresis		≤ 3.0% without dither
Threshold		≤ 0.5% without dither
Null shift	ΔT 40℃	≤ 2.0%
Internal leakage	140 bar supply (0.5% overlap)	≤ 1.8 l/min
Load pressure difference	1% input	≥ 30% of supply pressure can be as high as 100%
Response time	0-100% rated spool stroke	3-4 ms
Mounting pattern		ISO 10372-04-04-0-92 with X port
Mounting position		Any, fixed or movable
Weight	std unit	1.1 kg
Design protection	EN 60529	IP 65
Shipping protection		Sealed base plate
Vibration		30 g all axis, 5 Hz to 2,000 Hz
Shock		30 g all axis
Seal material options		NBR, FPM, EPDM
Temperature range		-30 to 135 ℃


_		
_	ectrica	ı

ted input ± (mA) single (differential)		8	15	30	40	100	200	
Other coil rates available	series	4	7,5	15	20	50	100	
	parallel	8	15	30	40	100	200	
Coil resistance (Ω)	resistance (Ω) per coil		200	300	80	28	22	
Power (W)	single	0,064	0,045	0,27	0,128	0,280	0,88	
	series	0,032	0,023	0,135	0,064	0,140	0,440	
	parallel	0,032	0,023	0,135	0,064	0,140	0,440	
Connector pin out identification		A B C D						
Polarity P»C2, C1»R	single	A +, B -	A +, B - or C +, D -					
	series	A +, D -,	A +, D -, C & D linked					
	parallel	parallel A & C linked +, B & D linked -						
Valve connector type	MIL-C-5015	MS3102	MS3102E-14S-2P mates with MS3106F-14S-2S					
		Consult factory for more options						
Standard connector orientation		P port	P port					
	also available over	C1, C2 o	r R port; pleas	se advise wh	en ordering			

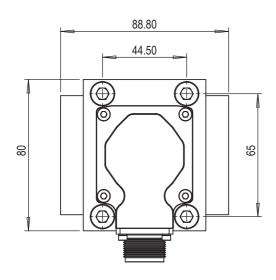


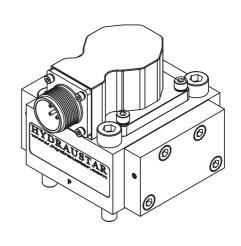

Rated Signal [In] is the specified input voltage or current of either polarity to produce rated flow. Rated input does not include null bias values.

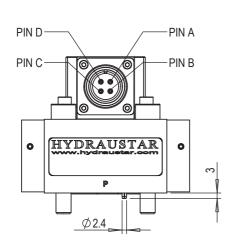

Rated flow corresponds to the flow at rated input at 10 bar or 70 bar, with no load, therefore in 4-way valves there will be a pressure drop of 5 bar or 35 bar respectively across each land.

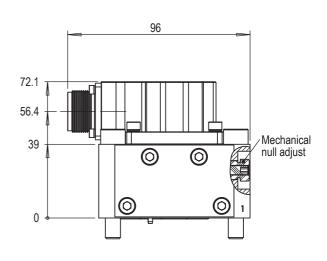
Load pressure difference versus input signal indicates typical differential pressure gain between ports C1 (A) and C2 (B) for standard lap spools. Negative and positive overlap change this characteristic significantly.

Internal leakage comprises of tare first stage and laminar leakage between spool and sleeve. With critical lap conditions in 4-way designs the leakage peaks through the null region.

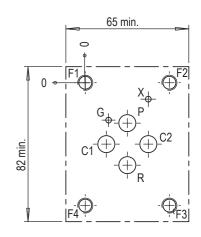





.


592-1 series INSTALLATION DETAILS

Mounting screws	Skt head cap screws M8 x 50 - 10.9 ISO 4762		
Null adjust (Mechanical) - 2.5 hex skt & 10 A/F lock nut - slacken lock nut (ccw) half-turn with 10 A/F ring spanner - insert 2.5 hex key into socket and rotate to obtain required null / offset value - hold hexagon key in desired position then tighten lock nut to 2 Nm			
Porting details	P, C1, C2, R ports \emptyset 9.0 $\ \ \ \ \ \ \ \ \ \ \ \ \ $		
Interface seals	Ports P, C1, C2, R, X - ID 10.82 x Ø 1.78 O-Ring		



Mounting interface conforms to ISO 10372-04-04-0-92										
	Р	C1	C2	R	Х	F1	F2	F3	F4	G
size	Ø9	Ø9	Ø9	Ø9	Ø3	M8	M8	M8	M8	Ø3 ∓5
х	22.25	11.14	33.35	22.25	33.35	0	44.50	44.50	0	12.35
у	21.39	32.50	32.50	43.61	8.70	0	0	65	65	19.80
Surface flat within 0.01 / 100 · finish better than 0.8 µm										

